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Abstract—The application of multi-armed bandit (MAB) algo-
rithms was a critical step in the development of Monte-Carlotree
search (MCTS). One example would be the UCT algorithm, which
applies the UCB bandit algorithm. Various research has been
conducted on applying other bandit algorithms to MCTS. Simple
regret bandit algorithms, which aim to identify the optimal arm
after a number of trials, have been of great interest in various
fields in recent years. However, the simple regret bandit algorithm
has the tendency to spend more time on sampling suboptimal
arms, which may be a problem in the context of game tree search.
In this research, we will propose combined confidence bounds,
which utilize the characteristics of the confidence bounds of the
improved UCB and UCB√

·
algorithms to regulate exploration

for simple regret minimization in MCTS. We will demonstrate
the combined confidence bounds bandit algorithm has better
empirical performance than that of the UCB algorithm on the
MAB problem. We will show that the combined confidence
bounds MCTS (CCB-MCTS) has better performance over plain
UCT on the game of9× 9 Go, and has shown good scalability.
We will also show that the performance of CCB-MCTS can
be further enhanced with the application of all-moves-as-first
(AMAF) heuristic.

I. I NTRODUCTION

Monte-Carlo Tree Search (MCTS) is a search algorithm
which determines the best course of action by systematically
performing a number of simulations. MCTS has the advantage
of only needing a minimal amount of domain knowledge to
achieve reasonable results, and has made a significant impact
on various fields of research in AI [4]. The multi-armed bandit
problem (MAB) is a decision making problem where the agent
faces a number of options, and tries to solve the dilemma of
whether to make the best decision based on the information
at hand (exploitation), or to gather more information at the
expense of not performing optimally (exploration)[1]. Bandit
algorithms resolve this dilemma, and the UCB algorithm is
one of those that can optimally solve the MAB problem [2].
The UCT algorithm is the application of the UCB algorithm to
MCTS, and is also the most successful and widely used MCTS
variant [3][4]. Various research on the application of other
bandit algorithms, such as KL-UCB [15], Thompson sampling
[16], sequential halving [14], to MCTS has also been carried
out, and has shown some interesting results [6][7][8][9][10].

In recent years, thepure explorationMAB problem has
been of interest in the research community [5]. The pure
exploration MAB problem modifies the objective to identify
which option would most likely be the optimal choice after a
specific number of trials, and can be equivalently formulated

as minimizingsimple regret, which is the difference between
the mean reward of the optimal option and the final identified
choice. This objective seems to be a better fit for the task of
game tree search. Therefore, investigations on applying various
bandit algorithms for solving the pure exploration MAB prob-
lem, orsimple regret bandit algorithms, to MCTS have shown
some promising results. The SR+CR scheme, where the SR
stands for simple regret and CR stands for cumulative regret,
is an MCTS algorithm that applies the simple regret bandit
algorithms to the root node, and the UCB algorithm on all other
nodes [6]. The sequential halving on trees (SHOT) algorithm
applies the sequential halving algorithm [14] to MCTS, and has
shown to have superior performance over UCT on the game of
NoGo. The Hybrid MCTS (H-MCTS) applies both the UCB
and the sequential halving algorithm to MCTS, by switching
from UCB to sequential halving after a predetermined number
of simulations have been performed on a node [8]. However,
one downside of simple regret bandit algorithms is that they
do not take the cost of exploration into account. This may not
be ideal in the context of game tree search, especially when
time and resources are rather restricted.

The improved UCB algorithm is a modification of the UCB
algorithm, and has an improved theoretical bound [11]. The
UCB√· algorithm is a bandit algorithm that has shown to be
able to minimize simple regret [6]. In this research, we propose
a method for dynamically adjusting the cost of exploration for
minimizing simple regret in MCTS, by applying the iteratively
updated estimation bound∆m in the improved UCB algorithm
as an extra factor for regulating the influence of the exploration
term in the confidence bounds of theUCB√· algorithm. We
will also develop the all-move-as-first-move (AMAF) heuristic
for this combined confidence bounds, and finally demonstrate
its empirical performance on the MAB problem and the game
of 9× 9 Go.

II. SIMPLE AND CUMULATIVE REGRET IN THE
MULTI -ARMED BANDIT PROBLEM

In the MAB problem, the agent is faced withK slot
machines (or “one-armed bandits”). The agent can decide to
play one of the slot machines (or “pull an arm”) on each play,
and the slot machine will produce a rewardr ∈ [0, 1]. There are
mainly two possible objectives in the MAB problem, and the
agent needs to adopt a playing strategy, orbandit algorithm,
accordingly.



A. Minimizing Cumulative Regret

In the conventional MAB problem, the task of the agent is
to accumulate as much reward as possible over a number of
playsT [1]. The task can be stated equivalently as minimizing
the cumulative regret, which is defined as

CRT =
∑T

t=1(r
∗ − rIt),

wherer∗ is the mean reward of the optimal arm, andrIt is the
received reward when the agent decides to pull armIt on play
t. A bandit algorithm is considered optimal if it can restrict
the cumulative regret toO(log T ). TheUCB algorithm, which
is used in the UCT algorithm [3], minimizes the cumulative
regret, restricting its growth toO(K log(T )

∆ ), where∆ is the
difference of expected reward between a suboptimal arm and
the optimal arm [2].

The improved UCBalgorithm, shown in Algorithm 1, is a
modification of the UCB algorithm, which improves the bound
on cumulative regret toO(K log(T∆2)

∆ ) [11]. The improved
UCB algorithm maintains a candidate set of possible optimal
armsBm, and eliminates arms that are likely to be suboptimal
fromBm. A pre-determined total number of playsT is given to
the algorithm, and it is further divided into⌊ 12 log2 T

e ⌋ rounds.
In each round, the algorithm samples each armnm times, and
proceeds to eliminate the arms whose estimated reward upper
bounds are lower than the lower bound of the current best
arm. The algorithm then halves the estimated difference∆m,
and moves on to the next round. After each round, the mean
reward for armai, wherei ∈ K, is estimated to be within

wi ±
√

log(T∆2
m
)

2nm
= wi ±

√

log(T∆2
m
)·∆2

m

4 log(T∆2
m
) = wi ± ∆m

2 ,

wherewi is the current average reward received from armai.

In the case where the total number of plays is unknown,
the improved UCB algorithm can be executed in an episodic
fashion, withT0 = 2 plays for the initial episode, andTℓ+1 =
T 2
ℓ for subsequent episodes.

B. Minimizing Simple Regret

Another variation of the MAB problem is to identify the
optimal arm after a pre-determined number of playsT [5]. The
objective can be stated as minimizing thesimple regret, which
is defined as

SRT = r∗ − rT ,

wherer∗ is the mean reward of the optimal arm, andrT is the
mean reward of the arm that the agent identifies as the optimal
arm afterT plays. Since the objective is to identify the optimal
arm, the amount of accumulated reward is irrelevant in this
variation. It has been shown that there is a trade-off between
minimizing the cumulative regretCRT and the simple regret
SRT , i.e., decreasingCRT will increaseSRT , and vice versa
[5]. Therefore, a different class of bandit algorithms is needed
for minimizing the simple regret.

The UCB√· algorithm, shown in Algorithm 2, is
a bandit algorithm that bounds the simple regret to
O((∆ exp(−

√
T ))K) [6]. TheUCB√· algorithm is essentially

Algorithm 1 The Improved UCB Algorithm [11]

Input: A set of armsA, total number of trialsT
Initialization : Expected regret∆0 ← 1, a set of candidates
armsB0 ← A
for roundsm = 0, 1, · · · , ⌊ 12 log2 T

e ⌋ do

(1) Arm Selection:
for all armsai ∈ Bm do

for nm = ⌈ 2 log(T∆2
m
)

∆2 ⌉ timesdo
sample the armai and update its average reward

wi

end for
end for

(2) Arm Elimination:
amax ← MAXIMUM REWARDARM(Bm)
for all armsai ∈ Bm do

if (wi +
√

log(T∆2)
2nm

) < (wmax −
√

log(T∆2)
2nm

) then
removeai from Bm

end if
end for

(3) Update∆m

∆m+1 = ∆m

2
end for

Algorithm 2 TheUCB√· algorithm [6]

Initialization : Play each machine once.
for t = 1, 2, 3, · · · do

play armai = arg max
i∈K

wi + c
√√

t
ti

,

wherewi is the current average reward,ti is the number of
times armai has been sampled.
end for

the same as the UCB algorithm, and only differs in the
definition of the exploration term of the confidence bound,

i.e., the exploration term for the UCB algorithm isc ·
√

log T
ti

and the exploration term for theUCB√· algorithm isc·
√√

T
ti

,
wherec is a constant, andti is the number of times that arm
ai has been sampled.

III. R EGULATING EXPLORATION IN SIMPLE REGRET
M INIMIZATION

The main objective of game tree search is to identify the
best course of action to take, and thus we mainly care about
the quality of the decision after the search has been performed
rather than the process itself. Therefore, simple regret bandit
algorithms seem to be more suited for MCTS.

However, since simple regret bandit algorithms try to
identify the optimal arm, and do not need to take the cost of
exploration, i.e.; in the context of game tree search, time is the
main measure of cost, into account, they tend to devote much
time and resources in verifying whether an arm is suboptimal
or not, rather than exploiting possible optimal arms. Because
time and resources are rather limited when we are performing
game tree search, this characteristic may not be desirable,since



the algorithm may end up spending most of its time exploring
parts of the tree that are irrelevant before it can search deeper
into more promising subtrees if the size of the game tree
is large. Therefore, it would be ideal to regulate the cost of
exploration in simple regret bandit algorithms by incorporating
some characteristics of cumulative regret bandit algorithms.

In this section, we will first introduce thecombined
confidence bounds, which utilizes the characteristics of the
improved UCB algorithm to regulate the influence of the explo-
ration term in theUCB√· algorithm. We will then describe the
bandit algorithm that uses the combined confidence bounds,
and finally show how it is extended to MCTS.

A. Combined Confidence Bounds

In the previous section, we have observed that the improved
UCB algorithm effectively estimates the expected reward of
arm ai as (wi ± ∆m

2 ) after each round. We will utilize this
characteristic for regulating the cost of exploration in the
UCB√· algorithm by modifying the confidence bounds in the
improved UCB algorithm to

wi ± c∆

√

log(T∆2
m
)·ri

2nm
,

whereri =
√
T
ti

andc∆ is a constant. By adding the factorri,
the expected reward of armai will effectively be estimated as

wi ± c∆

√

log(T∆2
m)ri

2nm
= wi ± c∆

√

log(T∆2
m) ·∆2

m · ri
4 log(T∆2

m)

= wi ± c∆ ·
∆m

2

√
ri

after each round. Sinceri =
√
T
ti

, we havewi±c∆ · ∆m

2

√
ri =

wi±c∆ ·∆m

2

√√
T
ti

, which differs from the confidence bound of

theUCB√·(c) algorithm only by the extra factor∆m

2 . There-
fore, the cost of exploration will be dynamically regulatedby
the restriction imposed on the exploration term by the∆m

2

factor. Another perspective is that the∆m

2 factor dynamically
tunes the constantc∆ in the confidence bound of the the
UCB√· algorithm.

B. Combined Confidence Bounds Bandit Algorithm

The bandit algorithm that uses the proposed combined
confidence bounds is shown in Algorithm 3. The algorithm
consists of three steps in each play, which is similar to the
improved UCB algorithm.

In the first step, we only sample the current best arm. By
sampling only the current best arm, the update of the simple
regret part of the combined confidence bounds will still be
in keeping with theUCB√· algorithm. As for the update
of ∆m, the current best arm will be sampled at leastnm

times, and hence the guarantee for the bound on the current
best arm to hold will be stronger than in the improved UCB
algorithm, although the guarantee for other candidates will be
weaker. In the context of game tree search, since it would be
more desirable for the search algorithm to explore the most
promising parts of the game tree, being “more certain” about

Algorithm 3 Combined Confidence Bounds Bandit Algorithm

Input: A set of armsA, total number of trialsT
Initialization : Expected regret∆0 ← 1, arm countNm ←
|A|, plays till ∆k updateT∆0

← n0 · Nm, wheren0 ←
⌈ 2 log(T∆2

0)

∆2
0

⌉, number of times armai ∈ A has been sampled
ti ← 0.
for roundsm = 0, 1, · · ·T do

(1) Sample Best Arm:

amax ← arg max
i∈|A|

(wi +
√

log(T∆2
k
)·ri

2nk
), whereri =

√
T
ti

wmax ←CURRENTMAX AVERAGEREWARD(A)
ti ← ti + 1

(2) Arm Count Update:
for all armsai do

if (wi +
√

log(T∆2
k
)

2nk
) < (wmax −

√

log(T∆2
k
)

2nk
) then

Nm ← Nm − 1
end if

end for

(3) Update∆k when DeadlineT∆k
is Reached

if m ≥ T∆k
then

∆k+1 = ∆k

2

nk+1 ← ⌈ 2 log(T∆2
k+1)

∆2
k+1

⌉
T∆k+1

← m+ (nk+1 ·Nm)
k ← k + 1

end if
end for

the current best arm would be more advantageous; hence this
trade-off is acceptable.

The second step is to update the count of arms that are still
candidates for being the optimal arm, i.e.; the arms whose
upper bound is still higher than that of the lower bound of
the current best arm. In the improved UCB algorithm,∆m is
halved after each round, and each round consists of(|Bm| ×
nm) plays, where|Bm| is the number of arms that are still
in the candidate set. Since we are only sampling the current
best arm, we do not need to maintain a candidate set, but we
still need to maintain the count of the arms that are still under
consideration for updating∆m.

The third and final step is halving∆m if the deadline has
been reached. After halving∆m, the new value ofnm and the
next deadlineT∆k+1

will also be updated accordingly.

C. Combined Confidence Bounds MCTS (CCB-MCTS)

The application of the proposed bandit algorithm to MCTS
is the same way as the UCB algorithm applied in the UCT
algorithm. The details of the Combined Confidence Bounds
MCTS (CCB-MCTS) are shown in Algorithm 4.

Because it is difficult to decide beforehand the appropriate
total number of plays that is needed for each node, the bandit
algorithm is run in an episodic manner, withN.T0 = 2 for
the initial episode, andN.Tℓ+1 = N.T 2

ℓ for the subsequent
episodes. When a new episode begins, which is whenN.t ≥
N.T , the estimated regretN.∆ and the count of candidate arms



N.armCount will be re-initialized, and the new deadline for
halvingN.∆ will also be updated accordingly.

IV. A PPLYING ALL -MOVES-AS-FIRST HEURISTICS TO
COMBINED CONFIDENCE BOUNDS

The all-move-as-first (AMAF) heuristic [4][12] is a widely
used performance enhancement technique in MCTS, which
exploits the fact that in some games, such as Go, the value of a
move is often unaffected by moves played elsewhere or when
it is played. More specifically, in thebackpropagationstage of
MCTS, instead of only updating the values of the nodes on the
path which we descended in theselectionstage, we also update
the values, i.e., the win rate and the simulation time counts,
of the sibling nodes if their move also occurred in the deeper
depth of the path or in thesimulationstage according to the
result of the playout. Although AMAF allows the information
from the playouts to be shared across the related positions or
moves in the game tree, it also introduces bias to its value.
Therefore, a common way of applying AMAF in MCTS is to
use the AMAF value to speed up the convergence rate in the
initial stages of a node, and gradually decrease the influence of
the AMAF value as the number of playouts on a node exceed
a certain point.

Rapid action value estimation (RAVE) [12] is currently the
most widely used method for combining AMAF values and
the original MCTS values. RAVE combines the win rate of a
function by

wRAV E = (1− β) · wMCTS + β · wAMAF ,

whereβ is a variable that diminishes as the number of playouts
increases. There are various scheduling schemes forβ, and one
of which is theminimum MSE schedule[12]. The minimum
MSE schedule, which tries to minimize the mean squared error
in the combined estimate, defines the value ofβ as

β = NAMAF

NAMAF+NMCTS+(NAMAF ·NMCTS)/D ,

whereNMCTS andNAMAF are the number of playouts per-
formed on the node in MCTS and AMAF sense respectively,
andD is the bias between the AMAF value and the MCTS
value. The biasD can be viewed as a parameter, which
can either be tuned manually or automatically with machine
learning methods.

There are two possible ways of applying RAVE to the
combined confidence bounds:

1) Apply RAVE to Win Rate:RAVE can be applied to the
combined confidence bound in the same way as it is applied
in the UCT-RAVE algorithm [12], by only applying RAVE on
the win rate

wiRAV E
± c∆

√

log(T∆2
m
)·ri

2nm
.

2) Apply RAVE to both Win Rate and Halving∆m: RAVE
can be further applied to the update of∆m by modifying the
playout counts for a node to

nRAV E = ⌊(1− β) · nMCTS + β · nAMAF ⌋,

Algorithm 4 Combined Confidence Bound MCTS Algorithm

function COMBCONFBOUND-MCTS(NodeN )
bestucb ← −∞
for all child nodesni of N do

if ni.t = 0 then
ni.ucb←∞

else
ri ←

√
N.t

ni.t

ni.ucb← n.w +
√

log(N.T×N.∆2)×ri
2N.k

end if
if bestucb ≤ ni.ucb then

bestucb ← ni.ucb
nbest ← ni

end if
end for

if nbest.times = 0 then
result←RANDOMSIMULATION ((nbest))

else
if nbest is not yet expandedthen NODEEXPAN-

SION((nbest))
result← COMBCONFBOUND-MCTS((nbest))

end if

N.w ← (N.w ×N.t+ result)/(N.t+ 1)
N.t← N.t+ 1

if N.t ≥ N.T then
N.∆← 1
N.T ← N.t+N.T ×N.T
N.armCount← Total number of child nodes
N.k ← ⌈ 2 log(N.T×N.∆2)

N.∆2 ⌉
N.deltaUpdate← N.t+N.k ×N.armCount

end if

if N.t ≥ N.deltaUpdate then
for all child nodesni of N do

if (ni.w +
√

log(N.T×N.∆2)
2n.k ) < (N.w −

√

log(N.T×N.∆2)
2n.k ) then

N.armCount← N.armCount− 1
end if

end for

N.∆← N.∆
2

N.k ← ⌈ 2 log(N.T×N.∆2)
N.∆2 ⌉

N.deltaUpdate← N.t+N.k ×N.armCount
end if
return result

end function

function NODEEXPANSION(NodeN )
N.∆← 1
N.T ← 2
N.armCount← Total number of child nodes
N.k ← ⌈ 2 log(N.t×N.∆2)

N.∆2 ⌉
N.deltaUpdate← N.k ×N.armCount

end function



but the deadline for halving∆m remains the same, i.e., the
calculation of the deadline will only use MCTS values and no
AMAF values. Therefore, RAVE can be applied in two places
in the combined confidence bounds

wiRAV E
± c∆

√

log(T∆2
mRAV E

)·ri
2nm

.

Note that the scheduling forwiRAV E
and∆mRAV E

should be
different, because AMAF values may have different biases in
these two terms. The playout countnRAVE is also used for
speeding up the episode iteration as well, i.e., the conditions in
Algorithm 4 are modified toN.tRAV E ≥ N.deltaUpdate and
N.tRAV E ≥ N.T , whereN.tRAV E is the RAVE simulation
count.

V. EXPERIMENTAL RESULTS

In this section, we will demonstrate the performance of the
combined confidence bounds on the MAB problem, and the
game of9× 9 Go.

A. Performance in the Multi-armed Bandit Problem

The settings of the MAB problem follow the multi-armed
bandit testbed specified in Sutton et al. [1]. The results are
the average of 2000 randomly generatedK-armed bandit
problems. A total of20, 000 plays were given. The rewards
of each bandit were generated from a normal (Gaussian)
distribution with the meanwi, i ∈ K, and variance1. The
mean wi of the bandits in eachK-armed bandit problem
instance were randomly selected from a normal distribution
with mean0 and variance1.

We have compared the performance of various bandit
algorithms:

• UCB: the UCB algorithm

• UCBsqrt: theUCB√· algorithm

• Improved UCB: the improved UCB algorithm

• Combined Confidence Bound: the episodic com-
bined confidence bound bandit algorithm. Since the
combined confidence bound is executed in an episodic
fashion when we applied it to MCTS, the behaviour
of the episodic version is of more interest.

The performance of the bandit algorithms on MAB prob-
lem with K = 60 andK = 300 is shown in Fig. 1 and Fig.
2, respectively.

It can be observed that theCombined Confidence Bound
bandit algorithm provides the best restriction on the growth
of cumulative regret, and the highest optimal percentage in
both cases. The “slack” of the combined confidence bound
bandit algorithm is due to the re-initialization when a new
episode starts. The cumulative regret of theUCB√· algorithm
increases almost linearly, which confirms the trade-off between
minimizing cumulative regret and simple regret. Although the
UCB√· algorithm did not perform as well as expected in
restricting simple regret. It can be observed in Fig. 1c and Fig.
2c that the combined confidence bound and the UCB algorithm
both outperformed theUCB√· algorithm. It is interesting
to observe that the cumulative regret of the improved UCB

algorithm is much higher than that of the UCB algorithm,
despite the fact that the improved UCB algorithm has a tighter
bound on the cumulative regret. In both Fig. 1b and Fig. 2b,
it can be observed that the rate of growth in the optimal
percentage of the improved UCB algorithm is greater than
that of the UCB algorithm. This may suggest that the improved
UCB algorithm tries to identify the optimal arm by the process
of elimination, which tries to verify and eliminate suboptimal
arms as early as possible. Therefore, it may have the tendency
to distribute the “necessary” number of plays on the suboptimal
in the early stage. In contrast, the UCB algorithm exploits the
possible optimal arm as early as possible, which effectively
distributes the “necessary” suboptimal plays evenly throughout
the whole process.

B. Comparison with Plain UCT on9× 9 Go

We will demonstrate the performance of combined confi-
dence bounds applied to the MCTS on the game of9× 9 Go,
with the komi of6.5. The baseline for all experiments is the
plain UCT algorithm. For a more direct and effective compar-
ison, all MCTS algorithms used pure random simulations, and
no extra performance enhancing heuristics.

1) Performance ofUCB√· MCTS and SR+CR scheme:
First, we will demonstrate the performance of the confidence
bound defined in theUCB√· algorithm in 9 × 9 Go. Table
I shows the win rate of various constantc√· settings of the
UCB√· MCTS and the SR+CR scheme against plain UCT.
The UCB√· MCTS applies theUCB√· bandit algorithm on
every node, and the SR+CR scheme applies theUCB√· bandit
algorithm on the root node and the UCB algorithm for other
nodes, with constantc of the UCB algorithm set to0.4 [6]. The
constant of the plain UCT algorithm was also set toc = 0.4.
The results are the average of 2000 games, with 5000 playouts
for each move. Both algorithms took turns in playing with
Black and White.

It can be observed that the best win rate thatUCB√·
MCTS and SR+CR scheme can achieve with the best setting
is around 50% to 51%, which is only nearly the same as the
plain UCT algorithm.

2) Tuning the C constants:We will proceed to find the best
settings for the constantc∆ in combined confidence bounds,
andc for the plain UCT algorithm. We have found the optimal
setting for c∆ is 0.47, and Table II shows its performance
against various constantc settings for plain UCT. All the
results are the average of 2300 games, with both algorithms
taking turns in playing with Black and White. A total of 5000
playouts are given to both algorithms for each move.

It can be observed that the best setting forc in the
UCT algorithm is0.37, against which the CCB-MCTS have
achieved a win rate of 53.83%. This result not only indicates
that the CCB-MCTS is slightly better than the UCT algorithm,
but also demonstrated that regulating the exploration termin
the confidence boundUCB√· algorithm is effective.

3) Scalability of CCB-MCTS:We will now proceed to
investigate the scalability of the CCB-MCTS as the total
number of playout increases. The result is shown in Table
III. All the results are the average of 2300 games, with both
algorithms taking turns in playing with Black and White. The



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000

C
um

ul
at

iv
e 

R
eg

re
t

Plays

UCB
UCBsqrt

Improved UCB
Combined Confidence Bounds

(a) Cumulative Regret

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000

%
 O

pt
im

al
 A

ct
io

n

Plays

UCB
UCBsqrt

Improved UCB
Combined Confidence Bounds

(b) Optimal Percentage

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000

S
im

pl
e 

R
eg

re
t

Plays

UCB
UCBsqrt

Improved UCB
Combined Confidence Bounds

(c) Simple Regret

Fig. 1: Performance of Various Bandit Algorithms (K = 60)

settings arec∆ = 0.47 for the CCB-MCTS, andc = 0.37 for
the plain UCT algorithm, and both algorithms have the same
number of total playouts for each move.

Since the difference between CCB-MCTS and the UCT
algorithm is mainly in the extra computational efforts needed
for the maintenance and reinitialization of various variables
such as expected regret∆k, arm countNm, and deadlineT∆k

,
the computation time of the two algorithms are roughly equal
to each other when given the same amount of playouts.

It can be observed that the CCB-MCTS has a small edge
when the number of playouts is less or equal to 7000, and it
has superior performance when given more than 9000 play-
outs. This result suggests that the CCB-MCTS has increased
performance when more playouts are given.
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Fig. 2: Performance of Various Bandit Algorithms (K = 300)

TABLE I: Win Rate of UCB√· MCTS and SR+CR scheme
[6] against plain UCT algorithm in9 × 9 Go. TheUCB√·
MCTS has a best win rate of 49.10% win withc√· = 0.2. The
SR+CR scheme has a best win rate of 52.30% whenc√· = 0.9
andc = 0.4.

c√
·

UCB√
·

MCTS SR+CR Scheme
0.1 45.30%± 3.09% 41.95%± 2.16%
0.2 49.10% ± 3.10% 48.70%± 2.19%
0.3 42.65%± 2.17% 50.55%± 2.19%
0.4 38.05%± 2.18% 50.45%± 2.19%
0.5 41.35%± 2.16% 51.75%± 2.19%
0.6 43.95%± 2.18% 49.85%± 2.19%
0.7 46.55%± 2.19% 51.95%± 2.19%
0.8 48.75%± 2.19% 51.55%± 2.19%
0.9 47.05%± 2.19% 52.30% ± 2.19%



TABLE II: The win rate of the combined confidence bound MCTS with c∆ = 0.47 against plain UCT algorithm with various
constantc settings on9× 9 Go. The optimal setting for plain UCT algorithm isc = 0.37, achieving a 53.82% win rate.

c Win Rate c Win Rate c Win Rate
0.1 62.57%± 1.98% 0.31 62.70%± 1.98% 0.41 57.70%± 2.02%
0.2 59.91%± 2.00% 0.32 61.04%± 1.99% 0.42 58.65%± 2.01%
0.3 62.91%± 1.98% 0.33 60.17%± 2.00% 0.43 60.78%± 2.00%
0.4 54.04%± 2.04% 0.34 57.83%± 2.02% 0.44 61.78%± 1.99%
0.5 63.87%± 1.96% 0.35 54.65%± 2.03% 0.45 61.09%± 1.99%
0.6 62.87%± 1.97% 0.36 55.26%± 2.03% 0.46 62.17%± 1.98%
0.7 63.13%± 1.97% 0.37 53.82% ± 2.03% 0.47 63.87%± 1.96%
0.8 61.70%± 1.99% 0.38 54.65%± 2.03% 0.48 62.87%± 1.97%
0.9 59.26%± 2.01% 0.39 55.60%± 2.03% 0.49 64.57%± 1.95%

TABLE III: Scalability of the CCB-MCTS on9 × 9 Go. The
win rate of the CCB-MCTS against plain UCT algorithm
gradually increases when more playouts are given.

Playouts Win Rate
1000 53.52%± 2.04%
3000 54.35%± 2.04%
5000 53.82%± 2.03%
7000 54.17%± 2.04%
9000 58.70%± 2.01%
11000 57.35%± 2.02%
13000 55.39%± 2.03%
15000 55.22%± 2.03%
17000 55.43%± 2.03%
19000 56.52%± 2.03%
21000 57.15%± 2.02%
23000 55.61%± 2.03%
25000 56.48%± 2.03%

4) CCB-MCTS with AMAF Heuristics:Finally, we will
investigate the effectiveness of applying AMAF heuristicsto
the CCB-MCTS.

The performance of the UCT-RAVE algorithm [12], in
which only the AMAF heuristic is applied to the win rate of
the UCB confidence bound, is shown in Table IV. The results
of the CCB-MCTS with AMAF heuristics are shown in Table
V.

Drate andD∆ are the parameters for RAVE in win rate
and∆m update, respectively. All the results are the average
of 2300 games, with both algorithms taking turns in playing
with Black and White. A total of 5000 playouts are given to
both algorithms for each move. The settings arec∆ = 0.47 for
the CCB-MCTS, andc = 0.37 for both the plain UCT and the
UCT-RAVE algorithm. The AMAF heuristics are only applied
on the CCB-MCTS and UCT-RAVE algorithm, and not on the
plain UCT algorithm.

We can observe in Table IV that the UCT-RAVE algorithm
can achieve a win rate of 62.70% against plain UCT, and
Table V showns that by applying RAVE only to the win
rate estimation term in the CCB-MCTS, the win rate can be
significantly improved from 53.82% to 66.61% against plain
UCT, an increase of around 13%. If RAVE is also applied
to ∆m update, a further improvement of about 2% may be
expected. Observing from the rate of increase of win rate, the
CCB-MCTS seems to benefit more from AMAF heuristics.

TABLE IV: The win rate of the UCT-RAVE algorithm against
plain UCT algorithm in9× 9 Go. The UCT-RAVE algorithm
achieved the best result of winning 62.70% of the games with
the setting ofDrate = 6000.

Drate Win Rate
500 55.48%± 2.03%
1000 58.78%± 2.01%
2000 59.09%± 2.01%
4000 61.87%± 1.99%
6000 62.70% ± 1.98%

TABLE V: The win rate of the combined confidence bounds
MCTS with AMAF heuristics against plain UCT algorithm
in 9 × 9 Go. The combined confidence bounds MCTS won
66.61% of the games by applying RAVE to win rate with the
setting ofDrate = 6000, and a 67.26% win rate when RAVE
are applied to both win rate and halving∆m, with the setting
of Drate = 7000 andD∆ = 50 respectively.

Drate D∆ Win Rate
No RAVE No RAVE 53.82%± 2.03%

500 No RAVE 55.52%± 2.03%
1000 No RAVE 57.82%± 2.02%
2000 No RAVE 60.70%± 2.00%
4000 No RAVE 64.39%± 1.96%
6000 No RAVE 66.61% ± 1.93%
2000 1000 61.30%± 1.99%
2000 800 60.83%± 1.99%
2000 400 62.70%± 1.98%
2000 200 63.13%± 1.97%
2000 100 62.43%± 1.98%
2000 50 63.96%± 1.96%
3000 50 65.13%± 1.95%
4000 50 67.13%± 1.92%
5000 50 65.70%± 1.91%
6000 50 65.57%± 1.94%
7000 50 67.26% ± 1.92%
8000 50 66.30%± 1.93%

We have to note that these are just sample settings to
show the effectiveness of applying AMAF, and not the optimal
settings; therefore there might be still room for further en-
hancement. It can also be observed thatDrate andD∆ should
have different values, whereDrate is may be a few hundred
times larger thanD∆.



VI. CONCLUSION

Simple regret bandit algorithms aim to identify the optimal
arm in a given time constraint, and hence seem to be promising
candidates for application in MCTS. However, the cost of
exploration is ignored in simple regret bandit algorithms,
which may not be desirable in the context of game tree search.

We have proposed the combined confidence bounds, which
utilize the∆m term in the confidence bounds of the improved
UCB algorithm to dynamically adjust the influence of the ex-
ploration term of confidence bounds of theUCB√· algorithm,
hence regulating the cost of exploration. We have also demon-
strated two possible ways of applying AMAF heuristics to the
combined confidence bounds. The empirical performance of
the combined confidence bounds bandit algorithm outperforms
the UCB algorithm in the MAB problem. The Combined
Confidence Bounds MCTS (CCB-MCTS) has shown to have
better performance over the plain UCT algorithm, and also
seems to have good scalability. The application of AMAF
heuristics greatly enhances the performance of the CCB-
MCTS, increasing the win rate over plain UCT by around
15%.

Exploring the possibility of applying other performance
enhancement heuristics and techniques, such as more intel-
ligent playouts [4][13], and application to other games would
naturally be the next step. Applying exploration regulation
on other more refined simple regret bandit algorithms, such
as the lil’UCB algorithm [17], would also be of interest.
Another possible extension would be to incorporate contextual
information to the combined confidence bound [18]. Finally,
since the combined confidence bound does not retain the
entire original properties of the improved UCB andUCB√·
algorithm, an investigation to its theoretical propertieswould
be of interest, and may provide further insights to the inner
workings of MCTS.
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