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Abstract—The application of multi-armed bandit (MAB) algo- as minimizingsimple regret which is the difference between

rithms was a critical step in the development of Monte-Carlotree  the mean reward of the optimal option and the final identified
search (MCTS). One example would be the UCT algorithm, which  choice. This objective seems to be a better fit for the task of
conducted on applying other bandit algorithms to MCTS. Simpe 4 it algorithms for solving the pure exploration MAB prob
regret bandit algorithms, which aim to identify the optimal arm lem, orsimple regret bandit algorithmso MCTS have shown
after a number of trials, have been of great interest in variaus ’ . !

some promising results. The SR+CR scheme, where the SR

fields in recent years. However, the simple regret bandit algrithm : .
has the tendency to spend more time on sampling suboptimal stands for simple regret and CR stands for cumulative regret

arms, which may be a problem in the context of game tree search 1S an MCTS algorithm that applies the simple regret bandit
In this research, we will propose combined confidence bounds algorithms to the root node, and the UCB algorithm on all othe

which utilize the characteristics of the confidence boundsfathe nodes [6]. The sequential halving on trees (SHOT) algorithm
improved UCB and UCB, . algorithms to regulate exploration applies the sequential halving algorithm [14] to MCTS, aad h
for simple regret minimization in MCTS. We will demonstrate  shown to have superior performance over UCT on the game of
the ppmblned confidence bounds bandit algorlthm has better NoGo. The Hybrid MCTS (H-MCTS) applies both the UCB
(I\e/lrlgrlc?:)é)lggom\;\?enC\fviltlhzﬂotvr\]/atthcgt tTr?eU(%?ngilgggthcn;nzgetr:fe and the sequential halving algorithm to MCTS, by switching
boundg MCTS (CCB-MCTS) has better performance over plain from UCB to sequential halving after a predetermined number
UCT on the game of9 x 9 Go, and has shown good scalability. of S|mulat|0_ns have_ been performed ona n_ode [8.]' However,
We will also show that the performance of CCB-MCTS can ©One downside of simple regret bandit algorithms is that they
be further enhanced with the application of all-moves-as-fst ~ do not take the cost of exploration into account. This may not
(AMAF) heuristic. be ideal in the context of game tree search, especially when
time and resources are rather restricted.
.- INTRODUCTION The improved UCB algorithm is a modification of the UCB
Monte-Carlo Tree Search (MCTS) is a search algorithralgorithm, and has an improved theoretical bound [11]. The
which determines the best course of action by systematicallUCB, - algorithm is a bandit algorithm that has shown to be
performing a number of simulations. MCTS has the advantaggble to minimize simple regret [6]. In this research, we s
of only needing a minimal amount of domain knowledge toa method for dynamically adjusting the cost of exploration f
achieve reasonable results, and has made a significant impaminimizing simple regret in MCTS, by applying the iteraliye
on various fields of research in Al [4]. The multi-armed bandi updated estimation bourd,,, in the improved UCB algorithm
problem (MAB) is a decision making problem where the agen@s an extra factor for regulating the influence of the exjiona
faces a number of options, and tries to solve the dilemma oferm in the confidence bounds of th&C'B . algorithm. We
whether to make the best decision based on the informatiowill also develop the all-move-as-first-move (AMAF) hetigs
at hand éxploitatior), or to gather more information at the for this combined confidence boundmd finally demonstrate
expense of not performing optimallgxXploration[1]. Bandit  its empirical performance on the MAB problem and the game
algorithms resolve this dilemma, and the UCB algorithm is of 9 x 9 Go.
one of those that can optimally solve the MAB problem [2].
The UCT algorithm is the application of the UCB algorithm to
MCTS, and is also the most successful and widely used MCTS
variant [3][4]. Various research on the application of @the
bandit algorithms, such as KL-UCB [15], Thompson sampling
[16], sequential halving [14], to MCTS has also been carried
out, and has shown some interesting results [6][7][8][O][1

Il. SIMPLE AND CUMULATIVE REGRET IN THE
MULTI-ARMED BANDIT PROBLEM

In the MAB problem, the agent is faced withl slot
machines (or “one-armed bandits”). The agent can decide to

In recent years, th@ure explorationMAB problem has play one of the slot machines (or “pull an arm”) on each play,
been of interest in the research community [5]. The pureand the slot machine will produce a reward [0, 1]. There are
exploration MAB problem modifies the objective to identify mainly two possible objectives in the MAB problem, and the
which option would most likely be the optimal choice after aagent needs to adopt a playing strategybandit algorithm
specific number of trials, and can be equivalently formwalate accordingly.



A. Minimizing Cumulative Regret Algorithm 1 The Improved UCB Algorithm [11]

In the conventional MAB problem, the task of the agentis nput: A_SEt_Of armsA, total number of trialsl’ _
to accumulate as much reward as possible over a number of Initialization : Expected regrefy, <— 1, a set of candidates
playsT [1]. The task can be stated equivalently as minimizing armsBo < A

the cumulative regretwhich is defined as for roundsm = 0,1,---, | log, T] do
_ T e (1) Arm Selection
ChRy =204 (7" —r1), for all armsa; € By, do
2log(TA .
wherer* is the mean reward of the optimal arm, angdis the for n, = (%] timesdo
received reward when the agent decides to pull &wn play sample the arm; and update its average reward
t. A bandit algorithm is considered optimal if it can restrict Wi
the cumulative regret t®(log T'). The UCB algorithm, which end for
is used in the UCT algorithm [3], minimizes the cumulative end for

regret, restricting its growth t@(%gm), where A is the

difference of expected reward between a suboptimal arm and
the optimal arm [2].

(2) Arm Elimination:
Gmaz < MAXIMUM REWARDARM(B,,)

for all armsa; € B,,, do

log(TA2) (TA2)

The improved UCBalgorithm, shown in Algorithm 1, is a if (w; + / (T2 ) < (Wnaw — log2nm ) then

modification of the UCB algorithm, which improves the bound

. K log(TA?) ) removea; from B,
on cumulative regret ta)(=—=1——) [11]. The improved end if
UCB algorithm maintains a candidate set of possible optimal end for
armsB,,,, and eliminates arms that are likely to be suboptimal
from B,,. A pre-determined total number of playsis given to
the algorithm, and it is further divided intd log, Z | rounds. 3 :leiatAe_mAm
In each round, the algorithm samples each aymtimes, and end fg} 2

proceeds to eliminate the arms whose estimated reward upper
bounds are lower than the lower bound of the current besk - -
arm. The algorithm then halves the estimated differefige Algorithm 2 The UCB, /- algorithm [6]
and moves on to the next round. After each round, the mean |njtialization : Play each machine once.
reward for arma;, wherei € K, is estimated to be within for t=1,2,3,--- do

_ } NG
w; \/ log(TA%) _ w; + log(TAZ)-AZ, _ w: + Ay play arma; = ar%elfr;ax wi +c i’
' 2 ' Alog(TAz) oy wherew; is the current average rewand,is the number of
times arma; has been sampled.

wherew; is the current average reward received from arm

end for
In the case where the total number of plays is unknown,
the improved UCB algorithm can be executed in an episodic
fashion, withT, = 2 plays for the initial episode, arifl,,; = the same as the UCB algorithm, and only differs in the
T7 for subsequent episodes. definition of the exploration term of the confidence bound,

o ) i.e., the exploration term for the UCB algorithmads ,/I%T
B. Minimizing Simple Regret -
and the exploration term for tiéC'B - algorithm isc- @
wherec is a constant, and; is the number of times that arm
a; has been sampled.

Another variation of the MAB problem is to identify the
optimal arm after a pre-determined number of playi$]. The
objective can be stated as minimizing simple regretwhich

is defined as
IIl. REGULATING EXPLORATION IN SIMPLE REGRET

SRy = 1% — rp, MINIMIZATION

The main objective of game tree search is to identify the
wherer* is the mean reward of the optimal arm, andis the  best course of action to take, and thus we mainly care about
mean reward of the arm that the agent identifies as the optimahe quality of the decision after the search has been peeidrm
arm afterT” plays. Since the objective is to identify the optimal rather than the process itself. Therefore, simple regratiba
arm, the amount of accumulated reward is irrelevant in thisalgorithms seem to be more suited for MCTS.
variation. It has been shown that there is a trade-off betwee
minimizing the cumulative regref’ R and the simple regret
SRr, i.e., decreasing' Rt will increaseS R, and vice versa
[5]. Therefore, a different class of bandit algorithms ieded
for minimizing the simple regret.

However, since simple regret bandit algorithms try to
identify the optimal arm, and do not need to take the cost of
exploration, i.e.; in the context of game tree search, tsnhé
main measure of cost, into account, they tend to devote much
time and resources in verifying whether an arm is suboptimal

The UCB,_. algorithm, shown in Algorithm 2, is or not, rather than exploiting possible optimal arms. Beseau
a bandit algorithm that bounds the simple regret totime and resources are rather limited when we are performing
O((Aexp(—VT))¥) [6]. The UCB,/ algorithm is essentially game tree search, this characteristic may not be desisibte



the algorithm may end up spending most of its time exploringAlgorithm 3 Combined Confidence Bounds Bandit Algorithm

parts of the tree that are irrelevant before it can searchatee
into more promising subtrees if the size of the game tree
is large. Therefore, it would be ideal to regulate the cost of
exploration in simple regret bandit algorithms by incoiorg
some characteristics of cumulative regret bandit algorith

In this section, we will first introduce theombined
confidence boundswhich utilizes the characteristics of the
improved UCB algorithm to regulate the influence of the explo
ration term in the/C'B, - algorithm. We will then describe the
bandit algorithm that uses the combined confidence bounds,
and finally show how it is extended to MCTS.

A. Combined Confidence Bounds

In the previous section, we have observed that the improved
UCB algorithm effectively estimates the expected reward of
arma; as (w; + %) after each round. We will utilize this
characteristic for regulating the cost of exploration ire th
UCB, . algorithm by modifying the confidence bounds in the
improved UCB algorithm to

Input: A set of armsA, total number of trials”
Initialization : Expected regref\, < 1, arm countN,, +
|Al, pIay2$ til A, updateTa, < ng - N,,, whereng «
(%1, number of times arm; € A has been sampled
for roundsm =0,1,---T do

(1) Sample Best Arm

Umaz < arg max(w; + %AE)'”), wherer; = @
i€|A| i

Wmaz < CURRENTMAXAVERAGEREWARD(A)
titi+1
(2) Arm Count Update:
for all armsa, do

; log(TA? log (T A2

if (’LUZ + Og;nk k)) < (wmam - %}Ck)) then

Ny = Ny — 1

end if

end for

(3) Update A, when DeadlineTx, is Reached
if m > Tx, then

log(TAZ2)-r;
wi £ ea [ g Apyr = 55
2 log(TAi+])

. | | Mg [ 28T R
wherer; = Y= andca is a constant. By adding the factoy, T —m ’(C;Ll Ny
the expected reward of arm will effectively be estimated as kA<i+;€ 1 kel s fm

end if
log(T A2 )r; log(TA2)- A2 -1,
i & = Tl — ;£ m) “m "1 end for
wisea 2im wisea 41og(TA2)
— + Am
=w; £ca - T\/T_i the current best arm would be more advantageous; hence this

trade-off is acceptable.
after each round. Since = @ we havew; +cn - Ax

t /T =

w;Eca- ATm v/ @ which differs from the confidence bound of

the UCB, /.(c) algorithm only by the extra facto@—m. There-
fore, the cost of exploration will be dynamically regulateg
the restriction imposed on the exploration term by ﬂﬁze
factor. Another perspective is that tl%ﬂ factor dynamically
tunes the constants in the confidence bound of the the
UCB, /. algorithm.

The second step is to update the count of arms that are still
candidates for being the optimal arm, i.e.; the arms whose
upper bound is still higher than that of the lower bound of
the current best arm. In the improved UCB algorithdy,, is
halved after each round, and each round consist$®f,| x
nm) plays, where|B,,| is the number of arms that are still
in the candidate set. Since we are only sampling the current
best arm, we do not need to maintain a candidate set, but we
still need to maintain the count of the arms that are stillamd
consideration for updating,,,.

The third and final step is halving,, if the deadline has

The bandit algorithm that uses the proposed combinetbeen reached. After halvingy,,,, the new value of.,,, and the
confidence bounds is shown in Algorithm 3. The algorithmnext deadlin€l’a, ., will also be updated accordingly.
consists of three steps in each play, which is similar to the

improved UCB algorithm. C. Combined Confidence Bounds MCTS (CCB-MCTS)

In the first step, we only sample the current best arm. BY - ¢ appjication of the proposed bandit algorithm to MCTS
sampling only the current best arm, the update of the simple. o o me way as the UCB algorithm applied in the UCT

regret part of the combined confidence bounds will still begigqrithm. The details of the Combined Confidence Bounds
in keeping with theUCB . algorithm. As for the update \;cT1g (CCB-MCTS) are shown in Algorithm 4
of A,,, the current best arm will be sampled at least '

times, and hence the guarantee for the bound on the current Because it is difficult to decide beforehand the appropriate
best arm to hold will be stronger than in the improved UCBtotal number of plays that is needed for each node, the bandit
algorithm, although the guarantee for other candidatdsb&il algorithm is run in an episodic manner, witki.7; = 2 for
weaker. In the context of game tree search, since it would bthe initial episode, andV.7,,, = N.T? for the subsequent
more desirable for the search algorithm to explore the mostpisodes. When a new episode begins, which is wNen>
promising parts of the game tree, being “more certain” aboutV.T, the estimated regréf.A and the count of candidate arms

B. Combined Confidence Bounds Bandit Algorithm



N.armCount will be re-initialized, and the new deadline for

halving N.A will also be updated accordingly. Algorithm 4 Combined Confidence Bound MCTS Algorithm

function ComBCONFBOUND-MCTS(Node N)

IV. APPLYING ALL-MOVES-AS-FIRST HEURISTICS TO bestycy ¢ —o0
COMBINED CONFIDENCEBOUNDS for all child nodesn; of N do
The all-move-as-first (AMAF) heuristic [4][12] is a widely : n;fud?(tjig
used performance enhancement technique in MCTS, which else
exploits the fact that in some games, such as Go, the value of a ro YNt
move is often unaffected by moves played elsewhere or when ‘ ni-t 5
it is played. More specifically, in thbackpropagatiorstage of n;.uch < n.w + \/W
MCTS, instead of only updating the values of the nodes on the end if
path which we descended in teelectionstage, we also update if bestye < n;.uch then
the values, i.e., the win rate and the simulation time cqunts bestyep < n;.uch
of the sibling nodes if their move also occurred in the deeper Npest < N
depth of the path or in theimulationstage according to the end if
result of the playout. Although AMAF allows the information end for
from the playouts to be shared across the related positions o
moves in the game tree, it also introduces bias to its value. if npest.times = 0 then
Therefore, a common way of applying AMAF in MCTS is to result < RANDOMSIMULATION ((npest))
use the AMAF value to speed up the convergence rate in the else
initial stages of a node, and gradually decrease the influehc if npese IS Not yet expandedhen NODEEXPAN-
the AMAF value as the number of playouts on a node exceed SION((npest))
a certain point. result <~ COMBCONFBOUND-MCTS((npest )
Rapid action value estimation (RAVE) [12] is currently the end if
most widely used method for combining AMAF values and
the originaIyMCTS values. RAVE combir?es the win rate of a %;ﬂ:]\(,]jf 1>< Nt +result)/(N.t +1)
function by ' '
if N.t> N.T then
wrave = (1= 8) - wyers + B wanmar, NA 1
NT <+~ Nt+NT xNT

wheref is a variable that diminishes as the number of playouts N.armCount + Total number of child nodes
increases. There are various scheduling schemes famd one Nk «— [w
of which is theminimum MSE scheduld2]. The minimum N_delmUpdatfgﬁ N.t+ N.k x N.armCount

MSE schedule, which tries to minimize the mean squared error end if
in the combined estimate, defines the valuesas
if N.t > N.deltaUpdate then
for all child nodesn; of N do

it (njw + yfBNIXNAYY (N —
where Nysors and Naysar are the number of playouts per- s n.k
formed on the node in MCTS and AMAF sense respectively, 4/ W) then

8= Navar
Navar+Nyucrs+(Namar-Nyucrs)/D'?

and D is the bias between the AMAF value and the MCTS N.armCount < N.armCount — 1
value. The biasD can be viewed as a parameter, which end if
can either be tuned manually or automatically with machine end for
learning methods.
. . N.A « XA

There are two possible ways of applying RAVE to the o Tog(N.Tx N.A2)

combined confidence bounds: Nk« [ZEF |
N.deltaUpdate <+ N.t + N.k x N.armCount
1) Apply RAVE to Win RateRAVE can be applied to the end if

combined confidence bound in the same way as it is applied return result
in the UCT-RAVE algorithm [12], by only applying RAVE on end function
the win rate

function NODEEXPANSION(Node V)
log(TAZ2 )-r;

2) Apply RAVE to both Win Rate and Halvidg,,: RAVE N.armCount + Tot@l) number of child nodes

! v | N.k 2log(N.tx N.A
can be further applied to the update &f, by modifying the k| VAT
playout counts for a node to N.deltaUpdate < N.k x N.armCount

end function

nrave = (1 —B) - nymcrs + - navar],



but the deadline for halving\,, remains the same, i.e., the algorithm is much higher than that of the UCB algorithm,
calculation of the deadline will only use MCTS values and nodespite the fact that the improved UCB algorithm has a tighte
AMAF values. Therefore, RAVE can be applied in two placesbound on the cumulative regret. In both Fig. 1b and Fig. 2b,

in the combined confidence bounds

log(TA7 )T

Wigave +ea 2o

Note that the scheduling fav,, ,, , andA,, ..., should be
different, because AMAF values may have different biases i
these two terms. The playout counk 4y g is also used for
speeding up the episode iteration as well, i.e., the cantitin
Algorithm 4 are modified taV.tgay g > N.deltaUpdate and
N.trave > N.T, where N.trav g is the RAVE simulation
count.

V. EXPERIMENTAL RESULTS

In this section, we will demonstrate the performance of the

combined confidence bounds on the MAB problem, and th
game of9 x 9 Go.

A. Performance in the Multi-armed Bandit Problem
The settings of the MAB problem follow the multi-armed

it can be observed that the rate of growth in the optimal
percentage of the improved UCB algorithm is greater than
that of the UCB algorithm. This may suggest that the improved
UCB algorithm tries to identify the optimal arm by the proges
of elimination, which tries to verify and eliminate subapéil
,Arms as early as possible. Therefore, it may have the tepdenc
to distribute the “necessary” number of plays on the sulbwgiti

in the early stage. In contrast, the UCB algorithm expldits t
possible optimal arm as early as possible, which effegtivel
distributes the “necessary” suboptimal plays evenly tghmut

the whole process.

B. Comparison with Plain UCT of x 9 Go

We will demonstrate the performance of combined confi-
glence bounds applied to the MCTS on the game »f9 Go,
with the komi of6.5. The baseline for all experiments is the
plain UCT algorithm. For a more direct and effective compar-
ison, all MCTS algorithms used pure random simulations, and
no extra performance enhancing heuristics.

bandit testbed specified in Sutton et al. [1]. The results are 1) Performance o/CB, . MCTS and SR+CR scheme:

the average of 2000 randomly generatBdarmed bandit

First, we will demonstrate the performance of the confidence

problems. A total 0f20,000 plays were given. The rewards bound defined in thé/CB . algorithm in9 x 9 Go. Table

of each bandit were generated from a normal (Gaussia
distribution with the meanu;, ¢ € K, and variancel. The
mean w; of the bandits in eachk-armed bandit problem
instance were randomly selected from a normal distributio
with mean0 and variance.

H()Jshows the win rate of various constany. settings of the

CB, . MCTS and the SR+CR scheme against plain UCT.
The UCB, . MCTS applies the/CB, ;- bandit algorithm on
rgvery node, and the SR+CR scheme appliedte3, - bandit
algorithm on the root node and the UCB algorithm for other
nodes, with constantof the UCB algorithm set t0.4 [6]. The

We have compared the performance of various banditonstant of the plain UCT algorithm was also sette: 0.4.

algorithms:

UCB: the UCB algorithm

UCBsqrt: the UCB, : algorithm

Improved UCB: the improved UCB algorithm

Combined Confidence Bound the episodic com-
bined confidence bound bandit algorithm. Since th
combined confidence bound is executed in an episod

The results are the average of 2000 games, with 5000 playouts
for each move. Both algorithms took turns in playing with
Black and White.

It can be observed that the best win rate that'B,
MCTS and SR+CR scheme can achieve with the best setting
is around 50% to 51%, which is only nearly the same as the

eplain UCT algorithm.

ic  2) Tuning the C constantd/Ve will proceed to find the best

fashion when we applied it to MCTS, the behaviour settings for the constanrty in combined confidence bounds,

of the episodic version is of more interest.

The performance of the bandit algorithms on MAB prob-

lem with K = 60 and K = 300 is shown in Fig. 1 and Fig.
2, respectively.

It can be observed that theéombined Confidence Bound
bandit algorithm provides the best restriction on the ghowt

of cumulative regret, and the highest optimal percentage in
both cases. The “slack” of the combined confidence boun
bandit algorithm is due to the re-initialization when a new

episode starts. The cumulative regret of th€ B, - algorithm
increases almost linearly, which confirms the trade-offieen
minimizing cumulative regret and simple regret. Althougk t
UCB, /. algorithm did not perform as well as expected in
restricting simple regret. It can be observed in Fig. 1c aigd F

andc for the plain UCT algorithm. We have found the optimal
setting forca is 0.47, and Table Il shows its performance
against various constant settings for plain UCT. All the
results are the average of 2300 games, with both algorithms
taking turns in playing with Black and White. A total of 5000
playouts are given to both algorithms for each move.

It can be observed that the best setting forin the
CT algorithm is0.37, against which the CCB-MCTS have
chieved a win rate of 53.83%. This result not only indicates
that the CCB-MCTS is slightly better than the UCT algorithm,
but also demonstrated that regulating the exploration t@arm
the confidence bountf C'B, - algorithm is effective.

3) Scalability of CCB-MCTS:We will now proceed to
investigate the scalability of the CCB-MCTS as the total

2c that the combined confidence bound and the UCB algorithmumber of playout increases. The result is shown in Table

both outperformed thé/CB, . algorithm. It is interesting

lll. All the results are the average of 2300 games, with both

to observe that the cumulative regret of the improved UCBalgorithms taking turns in playing with Black and White. The
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Fig. 1: Performance of Various Bandit Algorithm& (= 60)  Fig. 2: Performance of Various Bandit Algorithm& (= 300)

settings areea = 0.47 for the CCB-MCTS, anda: = 0.37 for TABLE I: Win Rate of UCB, . MCTS and SR+CR scheme
the plain UCT algorithm, and both algorithms have the samg¢6] against plain UCT algorithm ir9 x 9 Go. TheUCB, /.
number of total playouts for each move. MCTS has a best win rate of 49.10% win with- = 0.2. The

. . SR+CR scheme has a best win rate of 52.30% Wh\ﬁ_:h: 0.9
Since the difference between CCB-MCTS and the UCTgq. — 0.4.

algorithm is mainly in the extra computational efforts negd

for the maintenance and reinitialization of various vaeab
such as expected regray,, arm countV,,, and deadlind'a,,

the computation time of the two algorithms are roughly equal
to each other when given the same amount of playouts.

It can be observed that the CCB-MCTS has a small edge
when the number of playouts is less or equal to 7000, and it
has superior performance when given more than 9000 play-
outs. This result suggests that the CCB-MCTS has increased
performance when more playouts are given.

c.r. UCB - MCTS SR+CR Scheme
0.1 | 45.30%+ 3.09% | 41.95%+ 2.16%
0.2 | 49.10% 4 3.10% | 48.70%+ 2.19%
0.3 | 42.65%4+ 2.17% | 50.55%+ 2.19%
0.4 | 38.05%4 2.18% | 50.45%=+ 2.19%
0.5 | 41.35%+ 2.16% | 51.75%+ 2.19%
0.6 | 43.95%4 2.18% | 49.85%+ 2.19%
0.7 | 46.55%+ 2.19% | 51.95%+ 2.19%
0.8 | 48.75%4 2.19% | 51.55%+ 2.19%
0.9 | 47.05%+ 2.19% | 52.30% £+ 2.19%




TABLE II: The win rate of the combined confidence bound MCTShwin = 0.47 against plain UCT algorithm with various
constantc settings ord x 9 Go. The optimal setting for plain UCT algorithm is= 0.37, achieving a 53.82% win rate.

c Win Rate c Win Rate c Win Rate
0.1 | 62.57%4+ 1.98% | 0.31 | 62.70%+ 1.98% | 0.41 | 57.70%+ 2.02%
0.2 | 59.91%+ 2.00% | 0.32 | 61.04%+ 1.99% | 0.42 | 58.65%+ 2.01%
0.3 | 62.91%4 1.98% | 0.33 | 60.17%+ 2.00% | 0.43 | 60.78%+ 2.00%
0.4 | 54.04%+ 2.04% | 0.34 | 57.83%+ 2.02% | 0.44 | 61.78%+ 1.99%
0.5 | 63.87%4+ 1.96% | 0.35 | 54.65%+ 2.03% | 0.45 | 61.09%+ 1.99%
0.6 | 62.87%+ 1.97% | 0.36 | 55.26%+ 2.03% | 0.46 | 62.17%+ 1.98%
0.7 | 63.13%4+ 1.97% | 0.37 | 53.82% + 2.03% | 0.47 | 63.87%+ 1.96%
0.8 | 61.70%=+ 1.99% | 0.38 | 54.65%+ 2.03% | 0.48 | 62.87%+ 1.97%
0.9 | 59.26%+ 2.01% | 0.39 | 55.60%+ 2.03% | 0.49 | 64.57%+ 1.95%

TABLE llI: Scalability of the CCB-MCTS or9 x 9 Go. The

TABLE IV: The win rate of the UCT-RAVE algorithm against

win rate of the CCB-MCTS against plain UCT algorithm plain UCT algorithm in9 x 9 Go. The UCT-RAVE algorithm

gradually increases when more playouts are given.

achieved the best result of winning 62.70% of the games with
the setting ofD,.,;. = 6000.

Playouts Win Rate
1000 53.52%+ 2.04% Dyate Win Rate
3000 54.35%+ 2.04% 500 55.48%+ 2.03%
5000 53.82%+ 2.03% 1000 | 58.78%+ 2.01%
7000 54.17%+ 2.04% 2000 | 59.09%=+ 2.01%
9000 58.70%=+ 2.01% 4000 | 61.87%+ 1.99%
11000 | 57.35%+ 2.02% 6000 62.70%0:t 1.980/2
13000 | 55.39%+ 2.03%
15000 | 55.22%+ 2.03%
17000 | 55.43%+ 2.03%
19000 | 56.52%+ 2.03% TABLE V: The win rate of the combined confidence bounds
géggg ggéi’(ﬁi gggoﬁ MCTS with AMAF heuristics against plain UCT algorithm
55000 | 56.48% L 2 03% in 9 x 9 Go. The combined confidence bounds MCTS won

66.61% of the games by applying RAVE to win rate with the
setting of D,..;. = 6000, and a 67.26% win rate when RAVE
are applied to both win rate and halvidy,,, with the setting

4) CCB-MCTS with AMAF HeuristicsFinally, we will
investigate the effectiveness of applying AMAF heuristios
the CCB-MCTS.

The performance of the UCT-RAVE algorithm [12], in
which only the AMAF heuristic is applied to the win rate of
the UCB confidence bound, is shown in Table IV. The results
of the CCB-MCTS with AMAF heuristics are shown in Table
V.

D,qte and D are the parameters for RAVE in win rate
and A,,, update, respectively. All the results are the average
of 2300 games, with both algorithms taking turns in playing
with Black and White. A total of 5000 playouts are given to
both algorithms for each move. The settings @ke= 0.47 for
the CCB-MCTS, and = 0.37 for both the plain UCT and the
UCT-RAVE algorithm. The AMAF heuristics are only applied
on the CCB-MCTS and UCT-RAVE algorithm, and not on the
plain UCT algorithm.

We can observe in Table IV that the UCT-RAVE algorithm
can achieve a win rate of 62.70% against plain UCT, and
Table V showns that by applying RAVE only to the win
rate estimation term in the CCB-MCTS, the win rate can be

of D,.qie = 7000 and D = 50 respectively.

Diate Da Win Rate
No RAVE No RAVE | 53.82%=+ 2.03%
500 No RAVE | 55.52%+ 2.03%
1000 No RAVE | 57.82%+ 2.02%
2000 No RAVE | 60.70%+ 2.00%
4000 No RAVE | 64.39%+ 1.96%
6000 No RAVE | 66.61% + 1.93%
2000 1000 61.30% =+ 1.99%
2000 800 60.83%+ 1.99%
2000 400 62.70% =+ 1.98%
2000 200 63.13%+ 1.97%
2000 100 62.43%+ 1.98%
2000 50 63.96%+ 1.96%
3000 50 65.13%+ 1.95%
4000 50 67.13%+ 1.92%
5000 50 65.70%+ 1.91%
6000 50 65.57%=+ 1.94%
7000 50 67.26% + 1.92%
8000 50 66.30%+ 1.93%

We have to note that these are just sample settings to

significantly improved from 53.82% to 66.61% against plainshow the effectiveness of applying AMAF, and not the optimal
UCT, an increase of around 13%. If RAVE is also appliedsettings; therefore there might be still room for further en
to A,, update, a further improvement of about 2% may behancement. It can also be observed that;. and D should
expected. Observing from the rate of increase of win rate, thhave different values, wherB,..;. is may be a few hundred

CCB-MCTS seems to benefit more from AMAF heuristics.

times larger thama.



VI. CONCLUSION [9] P. Perrick, D.L. St-Pierre, F. Maes, and D. Ernst, “Congzn of
different selection strategies in monte-carlo tree seéoctihe game of

Simple regret bandit algorithms aim to identify the optimal tron,” Proceedings of the Conference on Computational Inteltgeand
arm in a given time constraint, and hence seem to be promising  ¢ames (CIG 2012)2012. _ . _
candidates for application in MCTS. However, the cost ofl10] T.Imagawa and T. Kaneko, “ Applying multi-armed banaligorithms
exploration is ignored in simple regret bandit algorithms, to MCTS and those analysisProceedings of the 19th Game Program-

hich be desirable in th f ming Workshop (GPW-14pp. 145-150, 2014.
which may not be desirable in the context of game tree Seard[-&l] P. Auer, and R. Ortner, “UCB revisited: improved regketunds for

. . . the stochastic multi-armed bandit problenfPeriodica Mathematica
We have proposed the combined confidence bounds, which  jngarica, vol. 61, pp. 1-2, 2010. P

utilize theA,m term in the,conﬁdence bounds of the improved [12] S. Gelly, and D. Silver, “Monte-Carlo tree search angidleaction value

ucCB z_':llgorlthm to dyn_amlcally adjust the influence Of the ex- estimation in computer GoArtificial Intelligence vol. 175, Issue 11,

ploration term of confidence bounds of th&’B_ - algorithm, pp. 1856-1875, 20011.

hence regulating the cost of exploration. We have also demomit3] R. Coulom, “Computing “elo ratings” of move patternstire game of

strated two possible ways of applying AMAF heuristics to the ~ 90," ICGA Journa) vol. 30(4), pp. 198-208, 2007.

combined confidence bounds. The empirical performance dfi4] Z. Karnin, T.Koren, S. Oren, "Almost optimal explorati in multi-

the combined confidence bounds bandit algorithm outpeorm armed bandits,’Proceedings of the 30th International Conference on

e UCB igorihm n the MAB problem. The Combined , "“s i (G010 s 0.

Confidence Bounds MCTS (CCB_'MCTS) has _Shown to haVé stochastic bémdits and beyon’(ﬂ%‘r‘oceedings of 24th Annual Conference

better performance over the _plaln UCT aIgothm, and also  on Learning Theory (COLT "11)pp. 359-376, 2011.

seems to have good scalability. The application of AMAF (16 E. Kaufmann, N. Korda, R. Munos, “Thompson sampling: asymp-

heuristics greatly enhances the performance of the CCB-  totically optimal finite-time analysis,Proceedings of 23rd Algorithmic

MCTS, increasing the win rate over plain UCT by around Learning Theory (ALT'12)pp. 199-213, 2012.

15%. [17] L. Jamieson, M. Malloy, S. Bubeck, and R. Nowak, “liI'’ BC an

optimal exploration algorithm for multi-armed bandit®toceedings of

Exploring the possibility of applying other performance tlhf 227(;;-14annual conference on Computational Learning Th¢GOLT’

enhancement heuristics and techniques, such as more int?llé] c)’ = - Mul 4 bandits with episod exnnals of

H H H . osin, ulti-arme anaits wi episode contexknnals o

“g?nt Fljlla%OUttsh [4][13],{’ a{]d ap;\phclayon to Olthe;.games ildc;u Mathematics and Artificial Intelligencevol. 61, issue 3, pp. 203-230,

naturally be the next step. Applying exploration regulatio 2011.

on other more refined simple regret bandit algorithms, such

as the li'UCB algorithm [17], would also be of interest.

Another possible extension would be to incorporate consxt

information to the combined confidence bound [18]. Finally,

since the combined confidence bound does not retain the

entire original properties of the improved UCB abd'B, -

algorithm, an investigation to its theoretical propertiesuld

be of interest, and may provide further insights to the inner

workings of MCTS.
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